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Abstract:  New optically active bidentate phosphines, (S,S)- and (R,R)-2,7-di-tert- 
butyl-9,9-dirnethyl-4,5-bis(methylphenylphosphino)xanthenes ((S, S)-I and (R, R)-I), 
were prepared through resolution of the corresponding phosphine oxides using (R, R)- 
(-)-dibenzoyl-tartaric acid and a preliminary experiment on asymmetric synthesis using 
an allyl substrate proved the utility of the new bidentate phosphines. 
© 1997 Elsevier Science Ltd. 

Much effort has been devoted to development of chiral phosphines for catalytic asymmetric synthesis 

over the past few decades, t.2 Most of the successful chiral phosphines are bidentate phosphines with two 

phosphines each bearing two phenyl substituents on the phosphorus atom, and the chirality usually occurs 

within the tethering carbon chain between the two phosphines. On the other hand, chiral bidentate phosphines 

with a stereogenic phosphorus atom(s) constitute a minor group because of their tedious synthesis and lack of 

reliable methods for their stereoselective synthesis. 3 While many chiral phosphines have been made, there is 

still a need for an entirely different phosphine for developing new transformations and improving the limitation 

of the known catalytic processes. We have engaged in the development of new chiral phosphine ligands for 

transition-metal catalyzed asymmetric synthesis. 4 As a part of the studies directed towards efficient ligands 

for catalytic processes we focused on the xanthene nucleus as a basic carbon backbone for the bidentate 

pbosphine ligands which have two phosphines at positions 4 and 5 producing unique ligands with a wide bite 

angle. We report here the preparation, characterization and an application of the new optically active bidentate 

phosphines, (S, S)- and (R, R)-2, 7-di-tert-butyl-9,9-dirnethyl-4, 5-bis(methylphenylphosphino)xanthenes ((S, S)- 

1 and (R,R)-I) with stereogenic phosphorus centers and novel interconversion catalyzed by lithium aluminum 

hydride between the (meso)-bisphosphine oxide and the (rac)-one at the stereogenic phosphorus centers. This 

type achiral diphosphine has been known along with its X-ray crystal structure and has been used in 

hydroformylation, s 

0 @ 

IS, S)-1 (,~,R)-I 

The preparation of I was carried out starting from the known dibromide 2 6 which was readily obtained 
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from c o ~ c i a l l y  available xanthone. The reaction of 2 with n-butyllithium followed by treatment of 

chloromethylphenylphosphine 7 produced, after treatment of hydrogen peroxide, a mixture of the (rac)- 

diphosphine oxide 3 and (meso)-one 4. s The desired (rac)-3 was easily separated by column chromatgraphy 

or crystallization in 35 % yield along with 46 % of the undesired (meso)-4. Disappointingly, this process 

unsurprisingly gave the undesired 4 as the major product. Fortunately, however, Mislow has observed 

racemization 9 of an optically active phosphine oxide by treatment of lithium aluminum hydride in which 

racemization occurs prior to reduction. We envisaged that the racemization procedure might be applied for 

interconversion between (rac)-3 and (meso)-4. The reaction of the (meso)-4 with 0.5 equivalent of lithium 

aluminum hydride in tetrahydrofuran at room temperature for 14 h proceeded along with some reduction of the 

substrate and afforded the (rac)-3 in 61% yield together with recovery of the starting (meso)-4 in 34 % yield 

after oxidation of the crude product with hydrogen peroxide and chromatographic purification, l° To our 

knowledge, this epimerization for preparation of the P-chiral bisphosphine is unprecedented in terms of the 

practical use and provides a practical solution of the inherent problem between the reaction of the dianion from 

the bishalide with the racemic phosphorus electrophile. 

1. n-Bt.lLi, THF 
2. PhP(CI)CH 3 + 

3. H r~LxTHF 

2 
(rac)-3 (meso )4  

~rneazaUon 

UAIH4, THF 

THF. relt~ 

(R,R)-a (S.S)-I 

(S,,S).3 (R,R)-I 

Resolution of (rac)-3 was carried out by the diastereomeric salt formation with (R,R)-(-)-dibenzoyl- 
tartaric acids ((-)-DBTA). Treatment of (rac)-3 with (-)-DBTA (0.6 eq) in chloroform-ethyl acetate and 

repeated recrystallization of the resulting crystals from benzene gave the (+)-3 "(-)-DBTA with 99.6 % ee as 

colorless crystals in 37 % yield. The combined mother liquor was treated with aqueous ammonia. The- 

obtained (-)-3 enriched material was subjected to salt formation and recrystallization to afford the (-)-3"(+)- 

DBTA with 99.4 % ee in 39 % yield. The free phosphine oxide was obtained by treatment of the salt with 

aqueous ammonia without the loss of stereogenic integrity. Their optical purities were unequivocally confirmed 

by chiral HPLC analysis. ~ Reduction of the phosphine oxide function with titanium tetraisopropoxide and 

polyrnethyl hydrosiloxane (PMHS) m2 smoothly proceeded with complete retention of the phosphorus chirality to 

give the corresponding phosphine ~3 in high yield. The phosphine without loss of optical purity was clearly 

confu'med by HPLC analysis of the corresponding phosphine oxides derived from hydrogen peroxide oxidation 

of (+)-1 and (-)-1. In order to determine absolute stereochemistry, X-ray analyses of (+)-3 and (+)-1 were 

carried out disclosing the (S,S)- and (S,S)-configurations, respectively, by comparison with the R factors of a 

pair of the enantiomers.~ 4 
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(s,s)-(+)-3 (S,S)-(+)-I 
Figure 1. Molecular structures of (S,S)-(+)-3 and (S,S)-(+)-I. 

In order to examine the utility of (+)-1, we focused on the asymmetric allylic substitution reaction 

between 1,3-diphenyl-2-propenyl acetate and dimethyl malonate. ~5'~6 With 1 mol % bis(benzylideneacetone) 

palladium and 1. I mol % (S, S)-(+)-I, the reaction in the presence of lithium acetate in 1,2-dichloroethane (-15 

~C, 1 h then room temperature, 6 h) efficiently proceeded to afford the (R)-product with 85 % ee in 96 % yieldJ 7 

CH2(CO2Me) 2, BSA MeO2CvCO2Me 
Pd(dba) 2 (1 tool%) ..=- 

P Ph P ~ P h  
5 ligand(1-1.1 tool%) 6 

liOAc CICH2CH2CI 

(S,S,)-(+)-I R = A c  -15 QC, lh; rt, 6 h 96 %, 85 % ee(R) 

(S, S)-(+)-I R = Piv rt, 3.5 d 99 %, 79 % ee(R) 

R = Piv rt, 18 h 100 %, 76 % ee(S) 

7 

c ~  

,~P" ~ '  "~ R = Piv rt, 2 d 76 %, 20 % ee(S) 

Interestingly, the monophosphine borane 7 served as the same efficient ligand as 1 for the as ,mmetric 

allylic substitution reaction while the corresponding monophosphine oxide 8 was a poor ligand. The above 

results indicate that either 7 might be converted to the corresponding free phosphine in the reaction media or the 

phosphine borane part as well as the phosphine one might function as a chelating ligand for the palladium. 

In summary, new bidentate phosphine ligands, (S,S)-(+)-I and (R,R)-(-)-I, have been synthesized 

and their application to the asymmetric allylic substitution reaction has been demonstrated. As described above, 

we found the novel interconversion from unutilized (meso)-bisphosphine oxide to (rac)-bisphosphine oxide, 

which provides a practical access to the synthesis of chiral bisphosphine ligands with stereogenic phosphorus 

centers. Further investigations of (S, S)-(+)-I and (R, R)-(-)-I are in progress. 
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